5.4A Graphing Quadratic Inequalities

#1 – 3: Determine whether each of the given points is a solution to the given quadratic inequality.

1.
$$y \ge x^2 - 3x + 3$$

2.
$$y < -\frac{1}{2}x^2 - x + 6$$
 3. $y > 2x^2 - x + 4$

b)
$$(3,3)$$

 $3 < -\frac{1}{2}(3)^{2} - (3) + 6$
 $< -\frac{9}{2} - 3 + 6$
 $3 < -\frac{1}{2}$ False
 DOT SOLN

3.
$$y > 2x^2 - x + 4$$

#4 – 6: For each inequality and graph (the points plotted are points that exist on the boundary)...

- > determine whether the boundary is included as a solution (solid) or not included as part of the solution (dashed).
- > use a test point to determine the solution region.

Graph the solution to each inequality.

4.
$$y \le x^2 - 4$$

Graphing Quadratic Inequalities 5.4A

#7 - 9: Fill in the blank with the appropriate inequality sign.

7.
$$y = \frac{1}{4}x^2 - 1x - \frac{5}{4}$$

$$y = \frac{1}{4}x^2 - 1x - \frac{5}{4}$$
 8. $y = \frac{1}{4}x^2 - 1x - \frac{5}{4}$ 9. $y = \frac{5}{4}x^2 + 4$

9.
$$y > 5x^2 + 4$$

#10 - 15: Match the inequality with its graph.

C 10.
$$y \ge -x^2 + 4x - 3$$
 A 11. $y \le -x^2 - 4x - 3$ F 12. $y \le x^2 + 2x - 3$

A 11.
$$y \le -x^2 - 4x - 3$$

$$y \le x^2 + 2x - 3$$

$$frac{13.}{2} y < x^2 - 4x + 3$$

E 13.
$$y < x^2 - 4x + 3$$
 B 14. $y > -x^2 + 4x - 3$ **D** 15. $y > x^2 - 2x - 3$

D 15.
$$y > x^2 - 2x - 3$$

5.4A Graphing Quadratic Inequalities

#16 - 23: Draw the graph of each quadratic inequality. When graphing the boundary, consider the various forms of a quadratic and the significant features that are identified from each form.

16. $y < x^2 - 2x - 1$

17.
$$y \ge x^2 - 9$$
 $(x+3)(x-3)$
 $x=3$

18. $y > -x^2 + 7x - 12$

$$0 = -1(x^{2}-7x+12)$$

$$0 = -1(x-3)(x-4)$$

$$x = 3, x = 4$$

5.4A Graphing Quadratic Inequalities

(continued): Draw the graph of each quadratic inequality. When graphing the boundary, #16 - 23consider the various forms of a quadratic and the significant features that are identified from each form.

22.
$$y > \frac{1}{2}(x+1)(x-5)$$

23.
$$y \le -2(x+1)^2 + 6$$

